Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.547
Filtrar
1.
Transl Vis Sci Technol ; 13(4): 23, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38630470

RESUMO

Purpose: The common protocol of full-field stimulus threshold (FST) testing recommends pupil dilation. The aim of this study is to investigate the difference between FST measurements with dilated and nondilated pupils in healthy subjects and patients with retinitis pigmentosa (RP). Methods: Twenty healthy subjects and 20 RP patients were selected. One pupil of each subject was dilated; the other eye was measured in physiological width of the pupil. The FST was conducted using Diagnosys Espion E2/E3 with white, blue, and red stimuli. Statistical analysis was conducted with a mixed-model analysis of variance and a paired t-test. Results: The statistical analysis revealed a significant difference between measurements of dilated and nondilated pupils with the following: blue stimuli for all subjects and groups except those with highly progressed RP; white stimuli for all tested subjects in total, for RP patients with better-preserved visual field (VF), and rod-mediated FST response; and red stimuli for RP patients with better-preserved VF and rod-mediated FST response. On average, the difference between the FST values for RP patients were -3.2 ± 3 dB for blue, -2.3 ± 2.9 dB for white, and -0.83 ± 3 dB for red stimuli. The correlation between the FST values of dilated and nondilated pupils with all three stimuli was linear. Conclusions: Current recommendations are to perform FST with dilated pupils. However, based on this study's findings, pupil dilation can be omitted for clinical diagnostics or rough follow-ups. Translational Relevance: Our data provide useful information for the clinical use of FST.


Assuntos
Pupila , Retinite Pigmentosa , Humanos , Voluntários Saudáveis , Projetos de Pesquisa , Retinite Pigmentosa/diagnóstico , Campos Visuais
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612560

RESUMO

Retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, significantly contribute to adult blindness. The Royal College of Surgeons (RCS) rat is a well-established disease model for studying these dystrophies; however, molecular investigations remain limited. We conducted a comprehensive analysis of retinal degeneration in RCS rats, including an immunodeficient RCS (iRCS) sub-strain, using ocular coherence tomography, electroretinography, histology, and molecular dissection using transcriptomics and immunofluorescence. No significant differences in retinal degeneration progression were observed between the iRCS and immunocompetent RCS rats, suggesting a minimal role of adaptive immune responses in disease. Transcriptomic alterations were primarily in inflammatory signaling pathways, characterized by the strong upregulation of Tnfa, an inflammatory signaling molecule, and Nox1, a contributor to reactive oxygen species (ROS) generation. Additionally, a notable decrease in Alox15 expression was observed, pointing to a possible reduction in anti-inflammatory and pro-resolving lipid mediators. These findings were corroborated by immunostaining, which demonstrated increased photoreceptor lipid peroxidation (4HNE) and photoreceptor citrullination (CitH3) during retinal degeneration. Our work enhances the understanding of molecular changes associated with retinal degeneration in RCS rats and offers potential therapeutic targets within inflammatory and oxidative stress pathways for confirmatory research and development.


Assuntos
Degeneração Macular , Degeneração Retiniana , Retinite Pigmentosa , Cirurgiões , Humanos , Adulto , Animais , Ratos , Retina
3.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605034

RESUMO

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


Assuntos
Sítios de Splice de RNA , Retinite Pigmentosa , Spliceossomos , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Proteômica , Splicing de RNA/genética , Processamento Alternativo/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Mensageiro/metabolismo , Mutação , DNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 456-460, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38565512

RESUMO

OBJECTIVE: To explore the genetic basis for a patient with autosomal dominant retinitis pigmentosa (RP). METHODS: A male patient with RP treated at Gansu Provincial Maternal and Child Health Care Hospital in September 2019 was selected as the study subject. Clinical data was collected. Peripheral blood samples of the patient and his parents were subjected to whole exome sequencing (WES). Candidate variant was validated by Sanger sequencing and bioinformatic analysis. RESULTS: The patient, a 29-year-old male, developed night blindness, amblyopia, visual field defects and optic disc abnormalities since childhood. Gene sequencing revealed that he has harbored a heterozygous c.942G>C (p.Lys314Asn) variant of the IMPDH1 gene, which was inherited from his mother, whilst his father was of the wild type. Based on the guidelines from the American College of Medical Genetics and Genomics, the c.942G>C variant was predicted as likely pathogenic (PM1+PM2_Supporting+PP3+PP1). CONCLUSION: The c.942G>C (p.Lys314Asn) variant in the IMPDH1 gene probably underlay the RP in this patient.


Assuntos
Retinite Pigmentosa , Adulto , Feminino , Humanos , Masculino , Biologia Computacional , Genômica , Heterozigoto , IMP Desidrogenase , Mães , Mutação , Retinite Pigmentosa/genética
5.
Mol Vis ; 30: 49-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586605

RESUMO

RPGR pathogenic variants are the major cause of X-linked retinitis pigmentosa. Here, we report the results from 1,033 clinical DNA tests that included sequencing of RPGR. A total of 184 RPGR variants were identified: 78 pathogenic or likely pathogenic, 14 uncertain, and 92 likely benign or benign. Among the pathogenic and likely pathogenic variants, 23 were novel, and most were frameshift or nonsense mutations (87%) and enriched (67%) in RPGR exon 15 (ORF15). Identical pathogenic variants found in different families were largely on different haplotype backgrounds, indicating relatively frequent, recurrent RPGR mutations. None of the 16 mother/affected son pairs showed de novo mutations; all 16 mothers were heterozygous for the pathogenic variant. These last two observations support the occurrence of most RPGR mutations in the male germline.


Assuntos
Proteínas do Olho , Retinite Pigmentosa , Humanos , Proteínas do Olho/genética , Linhagem , Mutação , Mutação da Fase de Leitura , Transtornos da Visão , Retinite Pigmentosa/genética , Retinite Pigmentosa/patologia
6.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570189

RESUMO

Crumbs homolog 1 (CRB1) is one of the key genes linked to retinitis pigmentosa and Leber congenital amaurosis, which are characterized by a high clinical heterogeneity. The Crumbs family member CRB2 has a similar protein structure to CRB1, and in zebrafish, Crb2 has been shown to interact through the extracellular domain. Here, we show that CRB1 and CRB2 co-localize in the human retina and human iPSC-derived retinal organoids. In retina-specific pull-downs, CRB1 was enriched in CRB2 samples, supporting a CRB1-CRB2 interaction. Furthermore, novel interactors of the crumbs complex were identified, representing a retina-derived protein interaction network. Using co-immunoprecipitation, we further demonstrate that human canonical CRB1 interacts with CRB1 and CRB2, but not with CRB3, which lacks an extracellular domain. Next, we explored how missense mutations in the extracellular domain affect CRB1-CRB2 interactions. We observed no or a mild loss of CRB1-CRB2 interaction, when interrogating various CRB1 or CRB2 missense mutants in vitro. Taken together, our results show a stable interaction of human canonical CRB2 and CRB1 in the retina.


Assuntos
Amaurose Congênita de Leber , Retinite Pigmentosa , Animais , Humanos , Peixe-Zebra/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Retina/metabolismo , Retinite Pigmentosa/genética , Retinite Pigmentosa/metabolismo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte/metabolismo
7.
Gene ; 912: 148367, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38485037

RESUMO

Retinitis pigmentosa 1-like 1 (RP1L1) is a component of photoreceptor cilia. Pathogenic variants in RP1L1 cause photoreceptor diseases, suggesting that RP1L1 plays an important role in photoreceptor biology, although its exact function is unknown. To date, RP1L1 variants have been associated with occult macular dystrophy (cone degeneration) and retinitis pigmentosa (rod degeneration). Here, we summarize the reported RP1L1-associated photoreceptor pathogenic mutations. The association between RP1L1 and other diseases (mainly several tumors) is also summarized and RP1L1 is included in a wider range of diseases. Finally, it is necessary to further explore the influence mechanism of RP1L1 gene on the health of photoreceptors and how it participates in the occurrence and development of tumors.


Assuntos
Degeneração Macular , Neoplasias , Retinite Pigmentosa , Humanos , Proteínas do Olho/genética , Degeneração Macular/genética , Neoplasias/genética , Retinite Pigmentosa/genética
8.
EMBO Mol Med ; 16(4): 805-822, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504136

RESUMO

For 15 years, gene therapy has been viewed as a beacon of hope for inherited retinal diseases. Many preclinical investigations have centered around vectors with maximal gene expression capabilities, yet despite efficient gene transfer, minimal physiological improvements have been observed in various ciliopathies. Retinitis pigmentosa-type 28 (RP28) is the consequence of bi-allelic null mutations in the FAM161A, an essential protein for the structure of the photoreceptor connecting cilium (CC). In its absence, cilia become disorganized, leading to outer segment collapses and vision impairment. Within the human retina, FAM161A has two isoforms: the long one with exon 4, and the short one without it. To restore CC in Fam161a-deficient mice shortly after the onset of cilium disorganization, we compared AAV vectors with varying promoter activities, doses, and human isoforms. While all vectors improved cell survival, only the combination of both isoforms using the weak FCBR1-F0.4 promoter enabled precise FAM161A expression in the CC and enhanced retinal function. Our investigation into FAM161A gene replacement for RP28 emphasizes the importance of precise therapeutic gene regulation, appropriate vector dosing, and delivery of both isoforms. This precision is pivotal for secure gene therapy involving structural proteins like FAM161A.


Assuntos
Retinite Pigmentosa , Animais , Camundongos , Humanos , Retinite Pigmentosa/genética , Retinite Pigmentosa/terapia , Retinite Pigmentosa/metabolismo , Retina/metabolismo , Éxons , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Terapia Genética , Proteínas do Olho/genética , Proteínas do Olho/química , Proteínas do Olho/metabolismo
9.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542364

RESUMO

Retinitis pigmentosa 11 is an untreatable, dominantly inherited retinal disease caused by heterozygous mutations in pre-mRNA processing factor 31 PRPF31. The expression level of PRPF31 is linked to incomplete penetrance in affected families; mutation carriers with higher PRPF31 expression can remain asymptomatic. The current study explores an antisense oligonucleotide exon skipping strategy to treat RP11 caused by truncating mutations within PRPF31 exon 12 since it does not appear to encode any domains essential for PRPF31 protein function. Cells derived from a patient carrying a PRPF31 1205C>A nonsense mutation were investigated; PRPF31 transcripts encoded by the 1205C>A allele were undetectable due to nonsense-mediated mRNA decay, resulting in a 46% reduction in PRPF31 mRNA, relative to healthy donor cells. Antisense oligonucleotide-induced skipping of exon 12 rescued the open reading frame with consequent 1.7-fold PRPF31 mRNA upregulation in the RP11 patient fibroblasts. The level of PRPF31 upregulation met the predicted therapeutic threshold of expression inferred in a non-penetrant carrier family member harbouring the same mutation. This study demonstrated increased PRPF31 expression and retention of the nuclear translocation capability for the induced PRPF31 isoform. Future studies should evaluate the function of the induced PRPF31 protein on pre-mRNA splicing in retinal cells to validate the therapeutic approach for amenable RP11-causing mutations.


Assuntos
Oligonucleotídeos Antissenso , Precursores de RNA , Retinite Pigmentosa , Humanos , Precursores de RNA/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Fases de Leitura Aberta , Mutação , Códon sem Sentido , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Linhagem
10.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474172

RESUMO

Aland island eye disease (AIED), an incomplete form of X-linked congenital stationary night blindness (CSNB2A), and X-linked cone-rod dystrophy type 3 (CORDX3) display many overlapping clinical findings. They result from mutations in the CACNA1F gene encoding the α1F subunit of the Cav1.4 channel, which plays a key role in neurotransmission from rod and cone photoreceptors to bipolar cells. Case report: A 57-year-old Caucasian man who had suffered since his early childhood from nystagmus, nyctalopia, low visual acuity and high myopia in both eyes (OU) presented to expand the diagnostic process, because similar symptoms had occurred in his 2-month-old grandson. Additionally, the patient was diagnosed with protanomalous color vision deficiency, diffuse thinning, and moderate hypopigmentation of the retina. Optical coherence tomography of the macula revealed retinoschisis in the right eye and foveal hypoplasia in the left eye. Dark-adapted (DA) 3.0 flash full-field electroretinography (ffERG) amplitudes of a-waves were attenuated, and the amplitudes of b-waves were abolished, which resulted in a negative pattern of the ERG. Moreover, the light-adapted 3.0 and 3.0 flicker ffERG as well as the DA 0.01 ffERG were consistent with severely reduced responses OU. Genetic testing revealed a hemizygous form of a stop-gained mutation (c.4051C>T) in exon 35 of the CACNA1F gene. This pathogenic variant has so far been described in combination with a phenotype corresponding to CSNB2A and CORDX3. This report contributes to expanding the knowledge of the clinical spectrum of CACNA1F-related disease. Wide variability and the overlapping clinical manifestations observed within AIED and its allelic disorders may not be explained solely by the consequences of different mutations on proteins. The lack of distinct genotype-phenotype correlations indicates the presence of additional, not yet identified, disease-modifying factors.


Assuntos
Albinismo Ocular , Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Miopia , Cegueira Noturna , Doenças Retinianas , Retinite Pigmentosa , Retinosquise , Masculino , Humanos , Pré-Escolar , Lactente , Pessoa de Meia-Idade , Canais de Cálcio Tipo L/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Retina/metabolismo , Mutação
11.
Klin Monbl Augenheilkd ; 241(3): 259-265, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38508214

RESUMO

Retinal dystrophies linked to the RPE65 gene are mostly fast-progressing retinal diseases, with childhood onset of night blindness and progressive visual loss up to the middle adult age. Rare phenotypes linked to this gene are known with congenital stationary night blindness or slowly progressing retinitis pigmentosa, as well as an autosomal dominant c.1430A>G (p.Asp477Gly) variant. This review gives an overview of the current knowledge of the clinical phenotypes, as well as experience with the efficacy and safety of the approved gene augmentation therapy voretigene neparvovec.


Assuntos
Cegueira Noturna , Distrofias Retinianas , Retinite Pigmentosa , Adulto , Criança , Humanos , cis-trans-Isomerases/genética , Terapia Genética , Mutação , Cegueira Noturna/terapia , Fenótipo , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Distrofias Retinianas/terapia , Retinite Pigmentosa/diagnóstico , Retinite Pigmentosa/genética , Retinite Pigmentosa/terapia
13.
JAMA Ophthalmol ; 142(3): e234804, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38512161

RESUMO

This case report describes a simultaneous diagnosis of paravenous retinochoroidal atrophy and retinitis pigmentosa in the same patient.


Assuntos
Oftalmopatias Hereditárias , Degeneração Retiniana , Retinite Pigmentosa , Humanos , Degeneração Retiniana/diagnóstico , Retinite Pigmentosa/diagnóstico , Atrofia
14.
Proc Natl Acad Sci U S A ; 121(11): e2316118121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442152

RESUMO

Retinitis pigmentosa (RP) is a common form of retinal dystrophy that can be caused by mutations in any one of dozens of rod photoreceptor genes. The genetic heterogeneity of RP represents a significant challenge for the development of effective therapies. Here, we present evidence for a potential gene-independent therapeutic strategy based on targeting Nr2e3, a transcription factor required for the normal differentiation of rod photoreceptors. Nr2e3 knockout results in hybrid rod photoreceptors that express the full complement of rod genes, but also a subset of cone genes. We show that germline deletion of Nr2e3 potently protects rods in three mechanistically diverse mouse models of retinal degeneration caused by bright-light exposure (light damage), structural deficiency (rhodopsin-deficient Rho-/- mice), or abnormal phototransduction (phosphodiesterase-deficient rd10 mice). Nr2e3 knockout confers strong neuroprotective effects on rods without adverse effects on their gene expression, structure, or function. Furthermore, in all three degeneration models, prolongation of rod survival by Nr2e3 knockout leads to lasting preservation of cone morphology and function. These findings raise the possibility that upregulation of one or more cone genes in Nr2e3-deficient rods may be responsible for the neuroprotective effects we observe.


Assuntos
Fármacos Neuroprotetores , Distrofias Retinianas , Retinite Pigmentosa , Animais , Camundongos , Células Fotorreceptoras Retinianas Cones , Retinite Pigmentosa/genética , Modelos Animais de Doenças , Células Germinativas , Receptores Nucleares Órfãos
15.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474159

RESUMO

PRPH2, one of the most frequently inherited retinal dystrophy (IRD)-causing genes, implies a high phenotypic variability. This study aims to analyze the PRPH2 mutational spectrum in one of the largest cohorts worldwide, and to describe novel pathogenic variants and genotype-phenotype correlations. A study of 220 patients from 103 families recruited from a database of 5000 families. A molecular diagnosis was performed using classical molecular approaches and next-generation sequencing. Common haplotypes were ascertained by analyzing single-nucleotide polymorphisms. We identified 56 variants, including 11 novel variants. Most of them were missense variants (64%) and were located in the D2-loop protein domain (77%). The most frequently occurring variants were p.Gly167Ser, p.Gly208Asp and p.Pro221_Cys222del. Haplotype analysis revealed a shared region in families carrying p.Leu41Pro or p.Pro221_Cys222del. Patients with retinitis pigmentosa presented an earlier disease onset. We describe the largest cohort of IRD families associated with PRPH2 from a single center. Most variants were located in the D2-loop domain, highlighting its importance in interacting with other proteins. Our work suggests a likely founder effect for the variants p.Leu41Pro and p.Pro221_Cys222del in our Spanish cohort. Phenotypes with a primary rod alteration presented more severe affectation. Finally, the high phenotypic variability in PRPH2 hinders the possibility of drawing genotype-phenotype correlations.


Assuntos
Distrofias Retinianas , Retinite Pigmentosa , Humanos , Análise Mutacional de DNA , Mutação , Mutação de Sentido Incorreto , Fenótipo , Distrofias Retinianas/genética , Retinite Pigmentosa/genética
16.
Cells ; 13(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534367

RESUMO

We report a novel RPGR missense variant co-segregated with a familial X-linked retinitis pigmentosa (XLRP) case. The brothers were hemizygous for this variant, but only the proband presented with primary ciliary dyskinesia (PCD). Thus, we aimed to elucidate the role of the RPGR variant and other modifier genes in the phenotypic variability observed in the family and its impact on motile cilia. The pathogenicity of the variant on the RPGR protein was evaluated by in vitro studies transiently transfecting the mutated RPGR gene, and immunofluorescence analysis on nasal brushing samples. Whole-exome sequencing was conducted to identify potential modifier variants. In vitro studies showed that the mutated RPGR protein could not localise to the cilium and impaired cilium formation. Accordingly, RPGR was abnormally distributed in the siblings' nasal brushing samples. In addition, a missense variant in CEP290 was identified. The concurrent RPGR variant influenced ciliary mislocalisation of the protein. We provide a comprehensive characterisation of motile cilia in this XLRP family, with only the proband presenting PCD symptoms. The variant's pathogenicity was confirmed, although it alone does not explain the respiratory symptoms. Finally, the CEP290 gene may be a potential modifier for respiratory symptoms in patients with RPGR mutations.


Assuntos
Transtornos da Motilidade Ciliar , Retinite Pigmentosa , Humanos , Masculino , Transtornos da Motilidade Ciliar/genética , Proteínas do Olho/metabolismo , Genes Modificadores , Mutação , Retinite Pigmentosa/genética
17.
Exp Eye Res ; 241: 109856, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479725

RESUMO

Rhodopsin-mediated autosomal dominant retinitis pigmentosa (RHO-adRP) causes progressive vision loss and is potentially incurable, accounting for 25% of adRP cases. Studies on RHO-adRP mechanism were at large based on the biochemical and cellular properties, especially class-3. Nonetheless, the absence of an appropriate model for class-3 RHO-adRP has impeded comprehensive exploration. Here, induced pluripotent stem cells (iPSCs) were generated from a healthy control and two sibling RP patients with the same point mutation, c.403C>T (p.R135W). The first three-dimensional (3D) retinal organoid model of a class-3 RHO point mutation from patient-derived iPSCs was generated. Significant defects were observed in rod photoreceptors in terms of localization, morphology, transcriptional profiling and single cell resolution, to better understand the human disease resulting from RHO mutations from a developmental perspective. This first human model of class-3 RHO-adRP provides a representation of patient's retina in vitro and displays features of RHO-adRP retinal organoids relevant for therapeutic development.


Assuntos
Retina , Retinite Pigmentosa , Humanos , Retinite Pigmentosa/genética , Mutação , Rodopsina/genética , Organoides
18.
Sci Rep ; 14(1): 6940, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521799

RESUMO

Whole-body physical exercise has been shown to promote retinal structure and function preservation in animal models of retinal degeneration. It is currently unknown how exercise modulates retinal inflammatory responses. In this study, we investigated cytokine alterations associated with retinal neuroprotection induced by voluntary running wheel exercise in a retinal degeneration mouse model of class B1 autosomal dominant retinitis pigmentosa, I307N Rho. I307N Rho mice undergo rod photoreceptor degeneration when exposed to bright light (induced). Our data show, active induced mice exhibited significant preservation of retinal and visual function compared to inactive induced mice after 4 weeks of exercise. Retinal cytokine expression revealed significant reductions of proinflammatory chemokines, keratinocyte-derived chemokine (KC) and interferon gamma inducible protein-10 (IP-10) expression in active groups compared to inactive groups. Through immunofluorescence, we found KC and IP-10 labeling localized to retinal vasculature marker, collagen IV. These data show that whole-body exercise lowers specific retinal cytokine expression associated with retinal vasculature. Future studies should determine whether suppression of inflammatory responses is requisite for exercise-induced retinal protection.


Assuntos
Degeneração Retiniana , Retinite Pigmentosa , Camundongos , Animais , Degeneração Retiniana/metabolismo , Quimiocina CXCL10 , Rodopsina/metabolismo , Retinite Pigmentosa/metabolismo , Modelos Animais de Doenças
19.
Cell Rep Med ; 5(4): 101459, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38518771

RESUMO

Retinitis pigmentosa (RP) is one of the most common forms of hereditary neurodegeneration. It is caused by one or more of at least 3,100 mutations in over 80 genes that are primarily expressed in rod photoreceptors. In RP, the primary rod-death phase is followed by cone death, regardless of the underlying gene mutation that drove the initial rod degeneration. Dampening the oxidation of glycolytic end products in rod mitochondria enhances cone survival in divergent etiological disease models independent of the underlying rod-specific gene mutations. Therapeutic editing of the prolyl hydroxylase domain-containing protein gene (PHD2, also known as Egln1) in rod photoreceptors led to the sustained survival of both diseased rods and cones in both preclinical autosomal-recessive and dominant RP models. Adeno-associated virus-mediated CRISPR-based therapeutic reprogramming of the aerobic glycolysis node may serve as a gene-agnostic treatment for patients with various forms of RP.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes , Retinite Pigmentosa , Animais , Humanos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinite Pigmentosa/genética , Retinite Pigmentosa/metabolismo , Retinite Pigmentosa/terapia , Células Fotorreceptoras Retinianas Cones/metabolismo , Modelos Animais de Doenças
20.
Neurobiol Dis ; 193: 106436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341159

RESUMO

Retinitis pigmentosa (RP) is a degenerative disease, caused by genetic mutations that lead to a loss in photoreceptors. For research on RP, rd10 mice, which carry mutations in the phosphodiesterase (PDE) gene, exhibit degenerative patterns comparable to those of patients with RP, making them an ideal model for investigating potential treatments. Although numerous studies have reported the potential of biochemical drugs, gene correction, and stem cell transplantation in decelerating rd10 retinal degeneration, a comprehensive review of these studies has yet to be conducted. Therefore, here, a comparative analysis of rd10 mouse treatment research over the past decade was performed. Our findings suggest that biochemical drugs capable of inhibiting the inflammatory response may be promising therapeutics. Additionally, significant progress has been made in the field of gene therapy; nevertheless, challenges such as strict delivery requirements, bystander editing, and off-target effects still need to be resolved. Nevertheless, secretory function is the only unequivocal protective effect of stem cell transplantation. In summary, this review presents a comprehensive analysis and synthesis of the treatment approaches employing rd10 mice as experimental subjects, describing a clear pathway for future RP treatment research and identifies potential clinical interventions.


Assuntos
Degeneração Retiniana , Retinite Pigmentosa , Camundongos , Humanos , Animais , Retinite Pigmentosa/genética , Retinite Pigmentosa/terapia , Retinite Pigmentosa/metabolismo , Degeneração Retiniana/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...